Title of Dissertation : SPATIAL AND TEMPORAL VARIABILITY OF BACTERIOPLANKTON COMMUNITIES ACROSS RIVER TO OCEAN ENVIRONMENTAL GRADIENTS
نویسندگان
چکیده
Bacterioplankton communities are deeply diverse within and across environments, yet also display repeatable patterns over seasonal and annual time scales. I assessed patterns of bacterioplankton community variability across the Columbia River coastal margin over space and time. Coastal zones encompass a complex spectrum of environmental gradients, which impact the composition of bacterioplankton communities. Few studies have attempted to address these gradients comprehensively, especially across large spatial and long temporal scales. I generated a 16S rRNA gene-based bacterioplankton community profile of a coastal zone from water samples collected from the Columbia River, estuary, plume, and along coastal transects covering 360 km of the Oregon and Washington coasts and extending to the deep ocean (>2000 m). I collected nearly 600 water samples during four consecutive years and eleven research cruises. Spatially, bacterioplankton communities separated into seven environments across the coastal zone (ANOSIM, p<0. (depth>850 m). Communities correlated strongly with the structuring physical factors of salinity, temperature, and depth. Within each environment, community variability correlated with factors important to primary and secondary production. In the freshwater-influenced environments of the Columbia River, estuary, and plume, communities varied seasonally and reassembled annually. Freshwater SAR11, Oceanospirillales, and Flavobacteria taxa were indicators of changing seasonal conditions in these environments. In contrast, seasonal change in communities was not detected in the coastal ocean but instead varied spatially with environmental conditions. Each coastal ocean environment had distinct taxa including SAR406 and SUP05 taxa in the deep ocean and Prochlorococcus and SAR11 taxa in the upper water column. A survey of metabolic potential (metagenomics) and gene expression (metatranscriptomics) across the salinity gradient showed that although communities were taxonomically distinct, the metabolic potential of these communities was highly similar. Additionally, gene expression patterns were extremely different and reflected the short-time scales on which microbial processes persist in an environment. Across the coastal zone, bacterioplankton communities were taxonomically distinct but metabolically similar, structured by physical factors, and predictable across seasons from river to ocean.
منابع مشابه
Spatial-Temporal Changes of Bacterioplankton Community along an Exhorheic River
To date, few aquatic microbial ecology studies have discussed the variability of the microbial community in exorheic river ecosystems on both the spatial and seasonal scales. In this study, we examined the spatio-temporal variation of bacterioplankton community composition in an anthropogenically influenced exorheic river, the Haihe River in Tianjin, China, using pyrosequencing analysis of 16S ...
متن کاملTemporal patterns of microbial community structure in the Mid-Atlantic Bight.
Although open ocean time-series sites have been areas of microbial research for years, relatively little is known about the population dynamics of bacterioplankton communities in the coastal ocean on kilometer spatial and seasonal temporal scales. To gain a better understanding of microbial community variability, monthly samples of bacterial biomass were collected in 1995-1996 along a 34-km tra...
متن کاملTemporal and spatial scales of variation in bacterioplankton assemblages of oligotrophic surface waters
Marine bacterioplankton dominate microbial carbon biomass in surface waters of the oligotrophic ocean, yet there have been few studies examining rates of change in bacterioplankton assemblage composition in situ over time and across water masses. Temporal changes in bacterioplankton assemblage composition were investigated during 7 drifter studies of 24 to 360 h duration in the oligotrophic Gul...
متن کاملThe Regulation of Bacterioplankton Carbon Metabolism in a Temperate Salt- Marsh System
Title of Dissertation: THE REGULATION OF BACTERIOPLANKTON CARBON METABOLISM IN A TEMPERATE SALTMARSH SYSTEM Jude Kolb Apple, Doctor of Philosophy, 2005 Dissertation Co-Directed By: Professor Paul A. del Giorgio Department of Biological Sciences Université du Québec à Montréal Professor W. Michael Kemp Horn Point Laboratory University of Maryland Center for Environmental Science This study descr...
متن کاملBacterial Biogeography across the Amazon River-Ocean Continuum
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communiti...
متن کامل